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INTRODUCTION

Information about the three dimensional world is conveyed

to our visual system as a pair of two dimensional light

intensity arrays imaged upon the retinae of our eyes. Our

central nervous system, through the process of stereopsis, is

able to recover from these images an accurate description of the

three dimensional structure of the environment. As observers,

we experience the process of stereopsis as the perception of

depth. Since the invention of the stereoscope 150 years ago,

the fundamental processes underlying stereo vision have been

intensely investigated, initially with psychophysical

experimentation, and, in more recent times, with

electrophysiological studies of the mammalian visual cortex.

Until recently, the profound difficulty of solving

stereopsis was not fully appreciated, in part because for

sighted individuals the process is fast and effortless. It

therefore came as a surprise in the late 1960's when it was

found 'hat computational approaches to stereopsis require

immense amounts of computation, and that the algorithms then

employed were grossly inadequate for all but the most simplistic

imaging situations. In the past twenty years both an increased

appreciation and understanding of the nature of this complex

information processing problem has developed. Recent research

into the psychophysical and physiological basis of stereopsis

has produced many important new findings. These findings

motivated the development, during this project, of a promising

new approach to computational stereopsis. This report describes

the new approach, its current implementation, and experimental

results, (using random dot stereograms) , that demonstrate its

feasibility. We first discuss the fundamentals of the

stereovision problem and review biological and computational

vision research that is pertinent to its solution.
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PROBLEM IDENTIFICATION

It has become clear that a comprehensive understanding of

the problem of stereopsis involves not only the understanding of

the psychophysical and physiological basis of stereopsis, but

also an understanding of a complex problem in the area of visual

information processing theory as well. To fully understand a

complex visual information processing system, it is first

necessary to understand the nature of the visual task that the

system is required to solve.

With regard to stereopsis, the images sensed by the two

eyes provide two highly correlated views of a single scene.

However, the stereoscopic images of objects at different

distances from the observer differ according to the unique

projective relation of each eye to the scene. The positional

difference in the projection of a single point on an object's

surface onto the two retinae is commonly referred to as retinal

disparity. Conversely, a pair of points, one in each retinal

image, are said to be corresponding points when their inverse

projections correspond to a single point on an object's surface.

The major task involved in stereopsis is to determine which

pairs of image points correspond to single object points for all

object points in the scene. This is commonly referred to as the

correspondence problem.

The magnitude of the retinal disparity of corresponding

points is directly proportional to the difference in depth

between a point on an object's surface and the fixation point of

the two eyes. Therefore the variations in disparity across the

population of all corresponding points can be used to produce a

relative depth map of the surfaces in a scene. Importantly,

with regard to the process of stereopsis, the sole information

base available in a pair of stereoscopic images is this
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disparity component of corresponding retinal points.

A general procedure for computing a depth map from

stereoscopic images is as follows: 1. determine the pairs of

coordinates in the two eyes which are projections of the same

visible surface point in the scene, ie. find all "corresponding"

points, 2. measure the disparity between all corresponding

points, and 3. use the disparity map together with knowledge of

the sensor geometry to recover the 3-D structure of the imaged

scene. The first task in the above procedure, namely solving

the correspondence problem, has historically proven to be the

most challenging. Once the point correspondence problem is

solved, rendering an unequivocal correspondence between points

in both images, the remaining two tasks involve relatively

straightforward applications of projective geometry. The novel

approach developed in this report describes a computational

solution to the correspondence problem whose implementation is

based on our current knowledge of the relevant psychophysics,

physiology and information processing theory of stereopsis.

The pioneering psychophysical research by Julesz (1960), in

which he employed random-dot stereograms to study human

stereopsis, produced critical information regarding where, in

the chain of visual processing events, stereopsis occurs.

Before Julsez's research, it was often assumed that the problem

of correspondence was solved by first recognizing objects and

their components, and then seeking correspondence matches

between recognized details in each image. Such a scheme places

the correspondence process quite late in the chain of visual

information processing events, certainly after complex monocular

object recognition processes have taken place. The Julesz

experiment demonstrated that this could not be the case. With

random-dot stereograms, the individual monocular images contain

no information about visible surfaces, texture gradients,

perspective, illumination gradients or object boundaries. The
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only information available is that of horizontal disparity.

Yet, when viewing random-dot stereograms, normal observers can

readily perceive surfaces in depth, and this percept of depth

only occurs after one achieves fusion. Therefore, human

stereopsis does not require an awareness of the features to

match in either monocular view, and, the process of stereopsis

can occur independent of monocular object recognition.

The importance of this observation is that it allows us to

formulate the process of human stereopsis as the computation of

disparity information from a pair of stereo images, without any

need for monocular cues (Poggio & Poggio, 1984).

CORRESPONDENCE PRIMITIVES

If human stereopsis does not rely upon complex object

recognition processes to generate correspondence primitives,

then what other types of primitives (locally computed image

descriptors) might be considered? It is easy to enumerate

possibilities since almost any spatially local linear or

nonlinear image functional, ranging from the raw gray-scale

intensity values to highly processed nonlinear descriptors,

could be used with some degree of success. Indeed, numerous

primitives for correspondence matching have been evaluated, a

few of which are discussed briefly below.

The most rudimentary information available to the human

visual system is a pair of two-dimensional intensity arrays. If

a point on a physical surface is imaged onto both retinae, then

one might suppose that the corresponding retinal image points

would have similar intensity values. However, attempts to solve

correspondence based on correlating the intensity values at each

array point have had little success (Sperling, 1970). The

problems with such an approach are as follows. First, two

corresponding image points can have quite different intensity
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values due to the different vantage points (perspectives) of the

two eyes. Second, the presence of sensor noise inevitably

produces local intensity errors that make correspondence

matching difficult within regions of gradual illumination

changes. Finally, image point intensity matching is

psychophysically questionable since, as shown by Julesz (1971),

stereo image pairs which differ greatly in their average

intensity are readily fused by human observers and produce a

depth percept.

We know from Julsez that high level representations such as

recognized objects are not used as the correspondence

primitives, and from Sperling that the non-specific primitives

of intensity values are insufficient. Therefore, there must be

some intermediate level of representation, between these two

possible extremes, that provides the primitives used in the

computation of stereopsis by the human visual system.

In the past decade a great deal of psychophysical,

physiological and computational research has explored

intermediate level stereo-matching primitives. The class of

primitives which has received the most attention to date are

those which indicate the presence of oriented luminance

discontinuities or "edges" in the image data (Marr & Poggio,

i976; Dey, 1975; Nelson, 1975 & 1977; Marr, Palm & Poggio, 1978;

Grimson, 1981; Mayhew & Frisby, 1981; Arnold, 1982; Gennery,

1980; Baker, 1980 & 1982; Baker & Binford, 1981). Indeed, the

labeling of discontinuities, or edges, has been an early step in

many image processing applications and a great deal of

engineering research has been dedicated to the development of

fast and reliable edge detection methods (for a review see

Davis, 1975). In recent applications of this approach, one or

more differential operators are generally applied to a multi-

resolution pyramid of images; the coordinates of maxima, minima,

or zero crossings are labeled at each level of resolution. Such

7



an approach underlies, for example, the Marr & Poggio theory

(1979) for stereopsis which specifically uses labeled zero-

crossing points in a multi-resolution, Laplacian-of-a-Gaussian

filtered image pyramid as stereo-matching primitives. However,

major criticisms of such edge primitives are often cited.

First, an early step toward obtaining such primitives

involves the application of differential operators. In

practice, this involves convolving the image with a discrete-

domain filter mask which approximates the desired differential

operation. Unfortunately, differential operators enhance the

deleterious effects of sensor noise by amplifying the high

frequency content of the image. Such ill effects are mitigated

to some extent by smoothing the resulting function (the role of

the Gaussian filter in Marr & Poggios' theory) but the

introduction of an integral operator (smoothing) seems to defy

the justification for using local differential operators in the

first place.

A second common criticism of edge primitives is based upon

the observation that they are "detected" (a highly nonlinear

operation) and inevitably information is lost at this stage.

Thiz criticism has, for example, been leveled at Marr & Poggios'

theory of representation with zero crossings since one can

readily devise stereoscopic images which produce a depth percept

w¢hen fused by human observerz, but which contain no zero

crossings whatsoever (Mallot & Bulthoff, 1987). One is forced

to concede therefore, that if zero-crossing primitives are

employed in human stereovision, then other unknown types of

primitives must be available in addition to compensate for the

loss of information at the (zero-crossing) detection stage.

A final objection to the use of edge primitives in stereo

matching is their sparse distribution in the image plane,

necessitating, therefore, an interpolation process to obtain a
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dense str ao depth estimation.

One can compensate for some of the above difficulties by

computing a large population of linear (non-detected)

differential primitives to form a feature vector which is

associated with each point in the image array. A correspondence

is then sought by seeking points with highly correlated sets of

these multiple measures. Such an approach was evaluated by Kass

k1983) , who used many partial derivatives of the image that were

smoothed via oriented filters of different sizes. This approach

can readily lead to primitives which are often arbitrary, non-

physiologic and numerous.

The above-mentioned shortcomings can be overcome by

representational schemes which use integral, rather than

differential operators, to obtain stereo-matching primitives.

Such primitives include, for example, the coefficients in

Fourier-like, or Gabor, image representations. Their notable

shortcoming relative to differential primitives, namely

computational expense, is rapidly diminishing as we continue to

benefit from dramatic advances in signal processing hardware

technology. It is our belief that primitives for stereo

matching that are based upon integral operators show much

greater promise than their differential counterparts in terms of

developing versatile artificial visual systems. In fact, as

discussed below, recent electrophysiological evidence strongly

suggests that integral operators underlie the primitives

employed for stereo matching in the human visual system.
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ELECTROPHYSIOLOGY

Convergence of inputs from the two eyes first occurs in the

primary visual cortex, referred to as VI. Barlow, Blakemore &

Pettigrew (1967) were the first to demonstrate that receptive

fields of some VI neurons in the cat were located at non-

corresponding zones in the retinae of the right and left eyes,

and that these neurons responded strongly when a line stimulus

to each eye was positioned on these disparate retinal zones.

(The receptive field of a visual neuron is the area on the

retina where visual stimulation can change the response rate of

the neuron). Barlow et al. suggested that these disparity

sensitive cells play a crucial role in stereoscopic depth

perception because, with fixation, these cells would be

selectively stimulated by stimuli at different relative depths.

These findings in cat have since been replicated in macaque

monkey (Poggio & Fisher 1977), an animal whose depth

discrimination abilities are similar to those of man (Bough,

1970). Other work has been aimed at characterizing the response

properties of these neurons by (1) providing quantitative

descriptions of their monocular filtering properties and (2)

delineating the manner in which these monocular fields are

combined. These two topics will be discussed separately below.

MONOCULAR FILTERING PROPERTIES

It is generally accepted that neurons in the primary visual

cortex can be classified into at least two major functional

types, namely, simple and complex. Many studies have shown that

simple cells linearly summate information across their receptive

field. Thus a description of the spatial filtering properties

of simple cells can be obtained by specifying their spatial

weighting functions. Complex cells exhibit strong non-linear

response properties. The two functional types will be discussed
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separately.

SIMPLE CELLS

Several investigators have noted that the spatial weighting

function of simple cells closely corresponds to the basis set of

a representational scheme proposed by Gabor (1946) as eminently

suitable for communications. In the original Gabor scheme a

one-dimensional function is expanded in terms of odd-symmetric

and even-symmetric signals defined as a Gaussian multiplied by a

sinusoid and cosinusoid, respectively. These Gabor functions

have the interesting property that their joint uncertainty,

defined as the product of the spread of the signals in

frequency and the spread of the signal in space, is equal to the

theoretical minimum.

In 1980 Marc4lja introduced the Gabor scheme to the vision

research community and showed that the one dimensional weighting

function of simple cells are well fitted by Gabor functions.

Pollen & Ronner (1981) demonstrated that simple cells which are

tuned to the same spatial frequency and orientation and have the

same axis of symmetry often have phase offsets of 90 degrees in

their response to drifting gratings. That is, simple cells

demonstrate the quadrature phase relationship required of Gabor

elementary signals. More recent experiments have examined the

two-dimensional spatial weighting surfaces of simple cells and

have found that they are well described by two-dimensional Gabor

functions (Palmer, Jones & Muillkin, 1985). These studies

suggest that the Gabor scheme provides a useful model of the

early stages of the visual process.

Following Daugman (1985) we define the 2D Gabor function,

depicted in Figures la,b, as:

# :ly =e p - (:- ~o 2+(y-yo)b 21] ei:p-2T i 1Uo(x- ,o)+vo(y-yo) ]3'
{(ii



(a) (b)

(c)

Fig. I The (a) real part and (b) imaginary part of a two-
dimensional complex-valued Gabor filter, and Cc) the
filter's spatial-frequency magnitude spectrum,
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with its 2D Fourier transform (Figure ic) given by:

FW,v) =e p[-T[ (U-Uo)l2 +(V Vo)/b2]}ei.p-"-- yi[: c(U-Lo)+yo(v-vo) 11. (1)

There are eight parameters in the Gabor filter family given

above:

Two spatial coordinates (xo, yo) which give the

location of the filter in visual space.

Two modulation coordinates (uo,vo) which give the

location of the filter in spatial frequency space.

The phase and amplitude which are specified by an

assumed complex coefficient, Ael', multiplying

equation (1).

The width and length of the 2D elliptical Gaussian

envelope (a and b), which are reciprocal in the two

domains.

Although current evidence is not sufficient to provide a

complete description of the parameters associated with the Gabor

representation at the simple cell stage, partial answers are

available. For example, the Fovea laboratory (Foster, Gaska,

Nagler & Pollen, 1985) has measured the filtering properties of

neurons in the primary visual cortex of the macaque monkey. The

bandwidths of spatial frequency tuning curves were found to

range from 1-3 octaves with a mean of about 1.6 octaves. The

widths of the receptive fields, (related to the width of the

elliptical Gaussian given in equation (1)), were inversely

related to the optimal spatial frequency of the cells. Thus,

the spatial frequency bandwidths (measured in octaves) were

relatively constant at all spatial frequencies. Other
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investigators (DeValois, Yund & Helper, 1982) have examined the

orientation tuning bandwidths of Vl cells and found a median of

about 40 degrees. In addition they found a positive

correlation between orientation bandwidths and spatial frequency

bandwidths. Daugman (1985) has analyzed this data and has shown

that it is consistent with the behavior of a set of 2D Gabor

filters with a field/width aspect ratio of 0.6. Thus, combining

the information gleaned from physiological data with reasonable

assumptions, such as a sampling density which is sufficient to

avoid aliasing, we have developed a computational model, to be

described shortly, which is similar to that found at the simple

cell stage in the primary visual cortex of the monkey and,

presumably, man.

COMPLEX CELLS

Several studies have shown that, when a stimulus whose

contrast changes sinusoidally over time is presented within the

receptive field of a complex cell, the cell's response is

frequency doubled with respect to the input temporal frequency

(Maffei & Fiorentini, 1973; Movshon, Thompson & Tolhurst, 1978).

Furthermore, the complex cell's response to a drifting sine-wave

grating is dominated by a large DC component with little or no

modulated activity. Both of these non-linear behaviors can be

accounted for by a model in which the complex cell squares the

output from each member of a simple cell quadrature phase pair

and then sums the result. These operations have the effect of

computing the squared modulus of a complex Gabor coefficient.

This model has recently been shown by Fovea (Pollen, Gaska, &

Jacobson, 1987) to predict the responses of complex cells not

only to single grating stimuli, discussed above, but also to the

presentation of compound grating stimuli.

BINOCULAR CONVERGENCE

14



As earlier stated, the primary visual cortex (Vl) is the

first site in the visual pathway where inputs from both eyes

converge on single cells; indeed, the majority of cells in V1

are responsive to stimulation in either eye. However, the rules

of combination are different for the two cell types (simple and

complex) discussed above.

This issue was addressed in an elegant series of

experiments by Ohzawa & Freeman (1986 a,b) who dichoptically

presented pairs of sinusoidal gratings with the same spatial

frequency and drift velocity, but with relative phases (ie.,

disparities) which were varied over 360 degrees. The majority

of binocularly driven simple cells (98%) responded with a

modulated response whose frequency was equal to that of the

input stimulus, and whose amplitude varied systematically with

the phase offset between the dichoptically presented gratings.

The responses of binocularly driven complex cells to the same

stimulus regime fell into two equally prevalent response

classes. Approximately 50% of the binocularly driven complex

cells showed an unmodulated response whose amplitude varied with

the phase offset between the dichoptically presented gratings;

hence these cells are denoted as "phase-dependent complex

cells." The remaining 50% of binocularly driven complex cells

showed an unmodulated response that did not vary with the phase

offset between the dichoptic gratings; these cells are referred

to as "phase-independent complex cells.'

The binocular cell responses observed by Ohzawa and Freeman

can be summarized by three straightforward computational models.

First, the responses of binocularly driven simple cells are

described by a model in which the inputs from the two eyes are

combined using a binocular, linear filter (Ohzawa & Freeman,

1986a) . Second, the responses of the phase-dependent complex

cells can be modeled by a non-linear (squared modulus) operation

applied to the output of one or more binocular, linear filters

15



(possibly simple cells). Third, the responses of the phase-

independent complex cells are predicted by a model which

summates two or more nonlinear, monocular inputs which are

themselves obtained by separately applying a nonlinear (squared

modulus) operation to the outputs of monocular linear filters

(Ohzawa & Freeman, 1986b). In all three cases, the spatial-

frequency tuning characteristics of these cells are predicted if

one assumes that the underlying linear filters have spatial

profiles described by Gabor functions. The simulated responses

of these three binocular cell types serve as the information

base from which relative depth information is extracted in the

system discussed below.

16



SYSTEM DESCRIPTION

A simplified outline of the stereo algorithm implemented in

this project is shown in Figure 2. Given a pair of 2D stereo

images, the algorithm is as follows:

0- Given a pair of stereoscopic images, then

for each disparity, d

1- Shift the left and right eye images horizontally by

distances +d/2 and -d/2, respectively.

2- Both add and subtract these shifted images to produce

a pair of interference images.

3- Compute two (complex-valued) space/spatial-frequency

Gabor representations, one from the sum interference

image, the other from the difference interference

image.

4- Compute the square moduli (energy) of these two

interference Gabor representations.

5- Add and subtract these energy representations to

obtain two space/spatial-frequency representations

which specify (a) the sum of the energy in the

separate (monocular) right and left eye Gabor

representations, and (b) the cross-correlation between

the monocular right and left eye Gabor

representations.

6- compute (a) a local 2D spatial energy representation by

locally integrating the left/right eye energy sum over all

17



2D spatial frequencies, and (b) a local cross correlation

function by integrating the left/right eye cross

correlation over all 2D spatial frequencies.

7- compute a 2D spatial, normalized cross-correlation

function by dividing the integrated left/right eye 2D

cross correlation function by the integrated

left/right eye 2D local combined energy function.

to obtain a 3-D normalized correlation function defined over one

dimension of disparity and two dimensions of spatial position.

Then for each 2-D spatial position

8- let the local disparity estimate be that disparity for

which the local 1-D normalized correlation function

(of disparity) achieves its overall maximum.

to obtain a 2-D disparity function.

In a complete stereovision system, the 2-D disparity

function obtained using the above algorithm would be further

processed to obtain an absolute depth map. Though this

additional processing is straightforward, it presumes knowledge

of a particular sensor configuration that will vary depending on

the application.

18
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Fig. 2 Overview of the disparity estimation algorithm used in
the implemented system.

19



RESULTS

We now describe results obtained from a system which

implements the disparity estimation algorithm presented in the

previous section. For the particular example chosen, the input

to the system consists of a random dot stereogram (Figures 3a,b)

that was constructed as follows. The left eye image of the

stereogram consists of random dots with an average density of

0.25 dots/pixel. The right eye image is identical to the left

eye image except that a rectangular inner portion is shifted 3

pixels to the right, and the gap introduced by the shift is

filled with an independent set of random dots. When viewing

each image monocularly, a human observer sees a flat array of

randomly placed dots; however, when fused, the observer

perceives a central rectangular region in depth behind a

rectangular foreground

The system's computed solution to the stereogram in Figure

3 is depicted in Figure 4. The original left eye and right eye

images have been colorized to indicate, for each eye's view,

which image points were estimated to be projections from the

near surface (red) versus the far surface (green). By fusing

this colorized stereo pair, it is possible to observe where the

computer's estimates differ from one's own depth percept. The

computed solution is seen to agree very well with one's

perceptual segregation of the surfaces in depth. In the

remainder of this section, we describe in greater detail the

actual computations performed to obtain the above result.

FOVEATION

The disparity estimation algorithm described in the

previous section was formulated in terms of the cartesian

coordinate frames of the original images, their displacements,
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Left Eye Image Right Eye Image

Fig. 3 The left eye and right eye images of a random dot

stereogram depicting a central rectangular region
behind a rectangular foreground when fused divergently.

Note that convergent viewing leads to a reversal in the
depth relationship.
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Left Eye Image Right Eye Image

Fig. 4 The system's computed solution to the stereogram in
Fig. 3. The original left-eye and right-eye images
have been colorized to indicate, for each eye's view,
which image points were estimated to be projections
from the near surface (red) versus the far surface
(green). Note that by fusing this colorized stereo
pair, one can observe where the computer estimates
differ from one's own depth percept.
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and their dual frequency domains. The actual implementation of

the algorithm, which produced the results presented in this

section, employs instead foveated representations of the left

and right eye images. The definition and benefits of foveated

representations are discussed briefly below.

The human visual system has long been known to employ an

image sampling strategy which, despite limited computational

resources, successfully provides both high spatial resolution

and a wide field of view. These conflicting goals are achieved

by providing a dense sampling of the retinal image within a

small, centrally located receptive area, known as the fovea, and

progressively diminished sampling with increasing distance from

the fovea. The application of such foveated sampling schemes to

machine vision systems would offer advantages over existing

systems which provide uniform sampling resolution over a highly

restricted visual field. In particular, a machine equipped with

a foveated visual system would employ camera movements to

selectively scrutinize the important targets in a scene with

high resolution, while monitoring, (albeit with reduced

resolution), the activity within its large field of view.

The foveated representation used in the current project is

modeled after that of the human visual system. Each original

image array is resampled onto a so-called polar exponential grid

(Figure 5a) with the aid of a linear, space-variant, low-pass

interpolating filter whose upper cutoff frequency drops with

increasing eccentricity (Figure 5c) . This results in a complex-

logarithmic, conformal mapping (Figure 5b) of each image, where

the mapping is performed with respect to a spatial origin within

the central foveal region. The resulting conformally mapped

images have orthogonal dimensions corresponding to the polar

orientation and log-of-polar radius of points in the original

image plane. Such a complex logarithmic conformal mapping has

been shown to approximate the actual mapping of the retinal
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Fig. 5 The space-variant (foveatftd) image mapping used by the
implemented system. (a) Sampling the sensor plane witha polar exponential grid (PEG), (b) remapping the
sensor plane sample points using the complexlogarithmic conformal mapping, (c) the high-frequencycutoff of the system as a function of visual field
eccentricity.
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surface onto the surface of the visual cortex (Schwartz,1977).

The effect of this mapping on the separate left and right

eye images of the random dot stereogram in Figure 3 is

illustrated in Figure 6. The vertical axes on the mapped images

specify the polar angle (0 degrees at the bottom), and the

horizontal axes specify the log of the radial distance from the

fovea. The lower edge of each conformally mapped image

therefore corresponds to a line in the original cartesian image

(Figure 3) which extends from near the image center horizuntally

to its right edge. Note that the mapping expands the

representation of the central part of the visual field relative

to that of the periphery. This is just as expected from a

sampling scheme which is dense near the fovea and sparse in the

periphery (see Figure 5a).

GABOR REPRESENTATION

In the next stage of processing, the system produces pairs

of conformally mapped Gabor representations. This is done by

convolving the conformally mapped images with specially modified

complex-valued Gabor filters. These filters reflect the complex

logarithmic variable transformation under the defining space-

variant Gabor convolution integral. As a side benefit, the

domain mapping converts the space-variant convolution integral

into a space-invariant convolution integral, reducing therefore

the complexity and computational expense of the Gabor filtering.

The filtering at this stage produces a pair of discretely

sampled 4D Gabor representations whose space and spatial-

frequency domains are both conformally mapped.

Examples of 2D sections through such 4D complex-valued

Gabor representations are presented in Figure 7. The images in

the top row depict the real part of the representation and those

in the bottom row depict the imaginary part of the
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(a) (b)

Fig. 6 Conformally mapped images. (a) and (b) show
respectively the conformally mapped versions of theleft eye and right eye images in Fig. 3. In each case,conformal mapping was performed with respect to anorigin at the point of visual fixation (the respective
image centers).
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representation. The images in the left column were computed

from the conformally mapped left eye image (Figure 6a) , and the

right column images from the conformally mapped right eye image

(Figure 6b). These sections through the monocular Gabor

representations reflect the disparity relationship of the

original images. At low eccentricities, (where the original

images are disparate by 3 pixels within a rectangular region),

the left and right eye Gabor functions are quite different as

can be seen by inspection of Figure 7 (leftward regions).

Conversely, at larger eccentricies, (where the original images

have zero disparity), the left and right eye Gabor functions are

indistinguishable (rightward regions). Such

differences/similarities of left and right eye Gabor

representations can be quantitatively measured using a cross-

correlation process such as that defined in Figure 2.

Although Figure 7 depicts sections through monocular Gabor

representations, in the actual disparity estimation system

(Figure 2) , one computes binocular Gabor representations

obtained from the sum and difference of horizontally shifted

left and right eye images. The computation of such a binocular

Gabor representation is consistent with the electrophysiological

data discussed earlier which indicates that the majority of

simple cells linearly filter input from both eyes. Subsequent

transformations of the Gabor representations of these sum and

difference interference images lead to correlation results that

are equivalent to those obtained by simply cross-correlating

monocular Gabor representations of shifted left and right eye

images.

CROSS-CORRELATION

A normalized cross-correlation between a pair of Gabor

representations is computed for each of numerous disparity

channels. The computations in each disparity channel differ
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(a) (c)

(b) (d)
Fig. 7 Complex-valued Gabor spectra. (a) The real part, and

(b) the imaginary part of a 2D section through the
conformally mapped 4D Gabor spectrum obtained by
filtering the conformally mapped left eye image in Fig.
6a; (b) and (d) show the related real and imaginary
results obtained by filtering the conformally mapped
right eye image in Fig. 6.
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only with regard to the relative horizontal shifts applied to

the right and left eye images as indicated by the "shifted

images" stage in Figure 2. The output of all disparity channels

can be combined to produce a discretely sampled, normalized

correlation function defined over three dimensions; namely, two

dimensions which specify position in a cyclopean visual field,

and a third dimension of binocular disparity.

The outputs of two such disparity channels are shown in

Figure 8, which depicts the normalized cross-correlation from

the 0 and 3-pixel disparity channels. The correlation functions

only take on values between -1 and +1. Bright and dark regions

signify respectively positive and negative correlations. Note

that the 0 disparity channel shows a strong positive correlation

at larger eccentricities (rightward) and negative correlation

throughout most of the small eccentricity region (leftward).

The opposite is true for the 3 pixel disparity channel.

DEPTH MAP

Figure 9 shows the result obtained after processing the two

correlation functions in Figure 8 to produce a 3D binary depth

map. For each 2D position in the cyclopean visual field, the 3D

map is bright only at the unique disparity which produced the

maximum correlation value across all disparity channels. In the

particular example shown, only two disparity channels (0 and 3

pixels) were used. Hence all points in the visual field were

assigned by the algorithm to one of these two possible

disparities.

Finally, to simplify the presentation of the solution, the

conformally mapped disparity estimate of Figure 9 was remapped

onto the original cartesian image domains of the two eyes to

produce the result shown in Figure 4. Recall that Figure 4

indicates, for each eye's view, which image points were
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(a) (b)

Fig. 8 Normalized cross correlation. (a) The normalized cross
correlation obtained from the 0 disparity channel, and
(b) the normalized cross correlation result for the 3
pixel uncrossed disparity channel. Bright regions
denote high correlation.
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(a) (b)

Fig. 9 Depth map. (a) A binary map of points in the cyclopean
visual field that are estimated to have zero disparity
(bright points), and (b) points estimated to have a
disparity of 3 pixels (bright points).
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estimated to be projections from the near surface (red) versus

the far surface (green). By visually comparing the fused depth

percept with the colorized zones, one observes that the solution

is in good agreement with the perceptual segregation of the

surfaces in depth.

32



FUTURE WORK

ENHANCED DISPARITY ESTIMATION FOR NATURAL IMAGES

In the example above, only two disparity channels were used

to demonstrate the new algorithm with a simple pair of test

images. However, when processing natural images, one would

employ numerous disparity channels to obtain estimates of the

continuously varying depth of surfaces in real-world scenes. An

immediate objective in follow-on work would be to use a

sufficient number of disparity channels to demonstrate the

effectiveness of the algorithm on natural stereoscopic imagery.

The results shown in the previous section were obtained by

pooling over Gabor filtering mechanisms of many orientations,

but only a single frequency scale, at each spatial position.

Because the random dot stereogram used in the example has a

wide-band spectrum, we were able to obtain accurate results.

However, when processing natural imagery, it will be necessary

to pool over the full complement of Gabor filter orientations

and scales. Indeed, the disparity estimation algorithm shown in

Figure 2 is designed to pool over multiple orientation and

frequency scales at each position. We have already

implementated the filtering necessary to produce a Gabor

representation at multiple scales, and future work should be

directed at enhancing the current system to pool over this full

Gabor representation.

Finally, rather than using a peak detection procedure to

find the best estimate of disparity at each point in the

cyclopean visual field, one might instead employ a more

sophisticated procedure to estimate the disparity at each point.

For example, the disparity channel correlations at each point in
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the cyclopean visual field could be interpolated in order to

estimate local disparity with finer resolution than that

associated with the interchannel disparity sampling. With such

an approach, one might be able to duplicate, (with a reasonable

number of disparity channels), stereoscopic hyperacuity, i.e.

the human ability to detect disparity differences as small as a

few seconds of arc.

ABSOLUTE DEPTH ESTIMATION

From binocular disparities the human visual system recovers

the three-dimensional shape of objects and computes estimates of

their absolute distance relative to the observer as well as to

other objects. Utilizing the information provided by horizontal

disparity it is only possible to recover the relative depths of

surfaces. Knowledge of the convergence angles as well as

interocular separation is necessary to recover estimates of

absolute depth from horizontal disparity information. In

biological systems, the convergence angle of the two eyes is

thought to be encoded by a signal of extraretinal origin. This

signal could provide the information necessary to transform the

(relative) disparity map into absolute depth information (Foley,

1980). However the precision of such a system and its effective

availability are unknown (Cormack & Menenedez, 1983).

In an artificial system, the distance between the receiving

elements (eyes) and their convergence angle can be precisely

known. Though these parameters are fixed in simple stereoscopic

systems, a truly versatile system would be able to vary these

parameters in order to derive accurate depth information over a

wide variety of target ranges. A major goal of future work is

to unite the disparity estimation algorithm developed in this

project with such a dynamic, convergent stereoscopic imaging

system.
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APPLICATIONS

The novel approach suggested in the technical portions of

this proposal should be useful in a wide variety of tasks which

require or would be enhanced by stereoscopic vision.

Application of the technique would provide cogent depth

information about the environment within which the system is

operating.

The alternate paradigms proposed for machine use of

stereoscopic depth information have been shown to have far less

efficacy and accuracy, but the innovative approach suggested in

this report should prove effective in its representation of

depth with real world images.

The algorithm implementation outlined in the technical

portions of this report has application far beyond the

immediate scope of the project. The primacy of stereo vision

(by virtue of its low-level position in the human visual

information processing hierarchy) indicates it is an important

requisite skill for operating within complex visual

environments. Thus, it would be desirable to implement such

visual processes in machine systems. The nature of the

algorithms outlined in this report make it possible to implement

stereo vision without artificial intelligence, i.e. it is a

purely knowledge-free, computationally-based process. The

technique will permit the application of human-analogue

stereopsis to such diverse areas as remotely-piloted vehicles,

autonomous manufacturing distribution vehicles, telepresence-

based systems, image interpretation, and self-guiding vehicles

typically envisioned by some military designers.

The requirements of each of these applications are quite

varied, yet the flexibility and adaptive nature of the technique
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make it possible to tailor the algorithm to a variety of

disparate uses. Almost any type of situation requiring machine

vision could benefit from this technique. The following section

describes some of the unique requirements for possible operating

environments.

POSSIBLE NEAR-TERM APPLICATIONS

THREE-DIMENSIONAL DISPLAYS

One area of application for human-based stereopsis is the

development of three-dimensional displays. As equipment becomes

more complex, the design and implementation of effective methods

for humans to operate and interpret system states increase in

difficulty. One method of combating this increased complexity

is to provide the operator with displays which capitalize on his

abilities. Displays which simulate objects or symbology in

three-dimensional space enable the operator to more easily deal

with large amounts of data in graphic rather than textual form.

The development of such human-analogue stereopsis shows great

promise both for the development and evaluation of future human-

computer interfaces.

One area which could benefit from the implementation and

diagnostic uses of the stereopsis algorithms outlined in this

paper is the virtual cockpit. In many cases, present three-

dimensional displays are less than optimal in their presentation

of some information. Although the suboptimal presentation is

recognized (often in the form of visual complaints from the

user), the difficulty lies in quantifying the deficiencies. For

example, there is only a limited range of disparity gradients

over which a human subject can fuse two images. A display

generator might produce gradients for a three-dimensional

display just at the limit of the subject's ability to fuse the

image, or could introduce subliminal drifts in disparity values.
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Although the user might not notice the problem, the conflict

within the visual system might be sufficient to produce visual

discomfort. The algorithms described in this report make it

easier to quantify and correct problems in the presentation

through objective analysis of the imagery. Furthermore,

application of the techniques in the development of the display

imagery would insure display parameters within the human

operating range. In effect, such development would tend to

produce displays already optimized for operator performance.

The Armstrong Aerospace Medical Research Laboratory and NASA are

two organizations deeply involved in the development of such

three-dimensional displays; they could benefit from applications

which would permit detailed analysis of their alternate visual

realities.

FUTURE APPLICATIONS

Future applications for the stereopsis algorithm proposed in

this report rely on real-time analysis of the visual

environment. The proposed technique is not only computationally

efficient, but human based. This is significant because

computations are only made within the human window of

visibility. High spatial frequencies outside of the window of

visibility (e.g. above the human's high spatial frequency

cutoff) are not computed because it is unnecessary for adequate

performance, and is too expensive computationally. The foveated

nature of the system means high-resolution computation time is

not wasted on the periphery, where humans don't use it. By

virtue of its human-based design, this means engineers can

design to the needs of the system, being precise only where it

is important. By definition, any processing scheme developed

with the system, when implemented on devices (displays) for

humans, will have been built only to the requirements of

necessary system. This makes system design very eff- ient and

cost effective.
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A brief summary of some systems requiring computation "on-the-

fly" are outlined below.

REMOTELY-PILOTED VEHICLES AND AUTONOMOUS VEHICLES

Remotely-piloted vehicles (RPVs) have seen increasing use

in both military and civil applications. In general, these are

untethered vehicles which relay sensor data back to a remote

operator. In some cases, the operator (or an associate)

controls the vehicle; in others, the vehicle travels a pre-

programmed path. Because RPVs are small and unobtrusive, they

are ideal platforms for visual observation. Since the primary

sensory information is visual, RPV applications stand to benefit

strongly from the stereoscopic algorithms. The enhanced visual

information would make the displays more realistic, and thus

enable the operator to better interpret the RPV sensor's

information. In addition, better visual fidelity would allow

the RPV to perform some self-navigation, freeing up the operator

for the more cognitively-demanding tasks such as analysis.

Possibly one of the most ambitious areas for the

application of human-based stereopsis is in autonomous vehicles.

These are mobile vehicles which operate without human

intervention, picking a safe and viable path either on

established roads or across country. These vehicles are

programmed to start from a specific point, traverse an

intermediate distance, and arrive at some destination. Only the

beginning and endpoints are known. The vehicle relies on

internal programming and problem-solving capabilities

(artificial intelligence) to navigate to its goal. Since this

stereopsis implementation is human-based, many of the problems

inherent in other stereopsis methodologies (such as sensor

noise, transparency, specular reflectances, lighting intensity

changes, and ambiguous matches) would be minimized, or perhaps
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even eliminated altogether. During a vehicle's traverse, it

could perform any number of tasks that might require good depth

information, including surveys, inspection, and intelligence

gathering. Specific applications could include planetary

exploration, land use surveys, factory and warehouse

distribution systems, and patrol.

Other RPV/autonomous vehicle applications which could benefit

from improved visual imagery include surveillance and image

processing. In concert with pattern recognition, the procedures

in this report could be useful in archaeology, resource

management, land-use mapping, and military intelligence.

TELEOPERATION

Although it has much in common with RPVs, teleoperation has

a wide range of akplications which warrant separate discussion.

Teleoperation is, in effect, the replacement of one visual

reality with another. It is a method for placing a human into

an environment which would otherwise be too hostile or

expensive. Although crude implementations currently exist, most

notably in the nuclear power industry, the remote manipulators

used in many powerplants and nuclear fuel handling centers are

rudimentary. The addition of high-quality imagery would vastly

improve human performance, since it would more realistically

place the human in the environment within which the task is

being performed.

NASA is currently developing three-dimensional displays to

present a robot's-eye-view to a human operator. This robot,

designed to replace the human for routine exterior tasks in the

space station, allows the operator to "see" what the robot sees.

With the addition of remote manipulators, the human would be

able to perform tasks in space from the shirtsleeve environment

of the space station. In addition to orbital assembly and
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nuclear powerplant operations, applications for work robots

include oil exploration and drilling, firefighting, mining, and

various military applications.

ROBOT VISION

In less dynamic (but no less demanding) environments, there

are applications of the stereopsis algorithms to robotic

assembly, quality control, inspection, and security systems.

MEDICAL APPLICATIONS

Many of the applications which have already been discussed

could be applied to medical procedures as well. The algorithms

could be used in medical imaging, or remote imaging for

noninvasive surgery, such as arthroscopic procedures.

FUTURE DIRECTIONS AND ENHANCEMENTS

This phase I effort has spearheaded the development of an

intelligent approach to the application of human cognitive and

visual abilities to nonhuman computer-based systems. The human

visual system has evolved to a remarkable state of competence.

The application of this competence provides a solid foundation

upon which to model an efficient and competent machine system.
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ADDENDUM

During the Phase 1 effort, we have developed a new
biologically motivated approach to stereoscopic depth estimation.
I: this approach, a pair of 4-D Gabor representations is computed
in each of many "disparity channels". For each channel, the
associated pair of Gabor representations are cross-correlated and
pooled to produce a 2-D normalized cross-correlation function.
When this function is combined with the correlation results of
all other disparity channels, there results a 3-D normalized
depth correlation function from which a depth map is readily
obtained by selecting, for each direction in visual space, the
disparity at which this correlation function is maximized. A
complete description of the full complexity of this new approach
is discussed in detail in the previously submitted Phase 1 final
report.

During the Phase 1 effort, we also developed a restricted
implementation of the new approach which enabled us to offer a
practical demonstration of its feasibility. The purpose of such
an implementation was to establish a proof of concept for the
developed disparity algorithms. For the imagery on which to
conduct this demonstration, we chose to employ random-dot

stereograms to test the current implementation of the algorithm.
Such stereograms are frequently (nearly universally) used in
initial tests of new stereo-depth estimation algorithms as they
are considered as the most appropriate imagery in terms of

providing a critical disparity estimation test. In particular,
as described in the final report, computational limitations of

the systems current implementation made it unsuitable for

processing real-world (natural-camera) images in a test of

feasibility.

First, as will be further elaborated in this addendum, the
new approach is, in general, very computationally demanding and
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thus imposes severe constraints on the capability to fully

process complex analog-in-depth imagery.

Second, due to the short 6-month duration of a Phase 1
effort, it was only possible to develop a restricted system

capable of demonstrating the essential elements of the new

approach in terms of feasibility. In particular, as was already
clearly elaborated in the final report, the current

implementation has two algorithmic limitations which severely
restrict its application to analog-in-depth imagery: (a) the
inability to pool over multiple spatial-frequency scales at each
point in the visual field, and (b) the inability to process
multiple (greater than two) planes of disparities. We review

these limitations below.

The current restriction to pooling over a single

spatial-frequency scale at each eccentricity limits the

effectiveness of the implemented system at handling imagery that

do not everywhere have broadband spectral characteristics.
However this does not limit the ability to demonstrate

feasibility as imagery with such broadband characteristics are

readily available. Given this limitation, random-dot stereograms
are ideal for demonstrating the approach in its current
implementation. This is due to the fact that in addition to

providing a salient and stringent testing medium, random dot
stereograms, by virtue of their pointillistic patterning are

spectrally broadband. Such stereo image pairs were therefore

used to demonstrate feasibility of the new approach in the Phase
1 final report.

The restriction of the current implementation to two

disparity channels causes the current system to assign each point

in the visual field to one of two possible depth planes. At this
level of implementation the existing system is not appropriate
for processing stereo imagery that depicts a scene containing

48



complex 3-dimensional objects whose surfaces lie at many depths

relative to the observer (i.e. analog-in-depth). For this reason
we used, in the final report, a "pure" stereogram structured such

that each element had residence in one of two unique depth planes

in order to demonstrate the feasibility of the new approach to

stereo depth estimation.

Importantly, the above restrictions do not apply to our new

approach, but apply only to the current restricted implementation

devised for the purpose of proof of concept given the nature of

the limitations imposed by the inherent computational complexity

of the task. The current implementation was solely developed to

evaluate the potential of the approach. The level of effort

required to fully implement the proposed new approach in a

prototype hardware/software system that is designed to robustly
handle real-world analog-in-depth imagery without restriction

would constitute a major effort over at least a two-year period.

Therefore, due to computing facility and algorithmic

limitations of the current implementation, we felt that it would

not be very informative, in terms of proof of feasibility, to

process real-world (camera) images for inclusion in the Phase 1

final report. Nonetheless, we originally proposed in the Phase 1

proposal to process real-world imagery during the feasibility

study. This was proposed before the details (as well as some of

the major physiologically-based processing strategies) of the new

approach had been invented, and hence it was not possible to

anticipate the high computational burden of the developed

approach relative to the capabilities of available computing

capacity.

This addendum describes the processing of a real-world

(camera) stereo-image pair to fulfill our obligation to process

such a image as delineated in the Phase 1 proposal. The

decision/notification of the necessity to demonstrate the new
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approach on real-world imagery occurred after submittal of the

Phase 1 final report. Thus, the documentation of the results of

such testing are reported in this addendum. We as researchers

originally had serious reservations as to the appropriateness of

-uch a test in tite rez;poct that the model implementation was

designed for proof of feasibility and was not implemented in the

potential full level of complexity which we felt would be

necessary to handle real-world analog-in-depth imagery. Despite

such reservations, a mutual agreement was reached in which one

real-world (camera) stereo image pair would be processed using
the current restricted implementation of the new depth estimation

approach. Such a test has subsequently been performed and its

outcome is discussed below.

Real-world (Camera) Image Example

The criteria we employed in our choice of a real-world

analog-in-depth view from which to obtain a stereo image pair for

processing required a salient complex scene structure with

multiple depth planes and multiple rates of transition across the

depth planes. We chose a computer board, in particular an EGA

video graphics controller board, as the real-world scene. This

produces a complex analog-in-depth image with many planar as well

as slanted surfaces. We used a consumer-grade RCA Neuvicon

camera to directly produce digitized stereo images of the EGA

video graphics controller board. The two differing views of the

object were produced by laterally displacing the camera whose

optical axis was maintained normal to the surface of the circuit

board. From each of these digitized images, we extracted a 265

by 265 pixel subimage such that these subimages depicted the same

general region of the circuit board. The resulting stereo image

pair is depicted as the stereogram of Figure Al (a) and (b). The

stereo images produce a rich depth percept with the proper

ordering of surfaces in depth when convergently fused by the

reader (i.e., Al(a) should be viewed by the right eye and Al(b)
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should be viewed by the left eye.)

In the 265 by 265 pixel coordinate frame of each image in

this stereo pair, the planar surface region on the large PROM

chip with the writing "SEEQ" is in 0-pixel disparity relation,

and the other visible surfaces all appear further away (when

convergently viewed) and have positive disparity relations

ranging up to approximately 15 pixels. In other words the planar

surface of this circuit chip is the "highest" surface in the

image. The integrated circuit portion of this PROM chip, which

is visible through the circular window in the center of the chip,

has a 2-pixel disparity relation in the stereo image pair and

thus appears to be noticeably below the planar surface of the

chip. For convenience a schematic map of disparities associated

with different surfaces is depicted in Figure A2. These

disparities were measured by inspection of the interference

images produced by shifting and subtracting the left and right

eye images in the stereo pair.

We chose the two disparity channels in the implemented depth

estimation system as 0 and 2 pixels disparity. We wished

therefore to test the ability of the existing implementation of

the system to correctly classify surfaces appearing at 0 and 2

pixels disparity. In other words, if the model performed ideally

it should be capable of segregating those two regions of the

image, namely, the top of the large chip (residing at 0

disparity) and the IC circuit and surrounding bonding pad region

(residing at 2 pixels disparity). Surfaces which appear in the

images at other disparities not processed by the system were

expected to be incorrectly and randomly assigned to either the 0

or 2 pixel disparity plane.

The interesting solution obtained using the existing

implementation is shown in Figure A3 (a) and (b) where the system

solution is depicted by the colorization process of the original
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stereo image pair. Red regions were estimated to have a 0-pixel

disparity relation and green regions were estimated to have a 2-

pixel disparity relation. This solution can therefore be

directly compared by the reader to the "correct" disparity map

(the percept produced through convergent fusion, as already shown

in Figure A2. Recall that this map was manually determined as

well before conducting the experiment. Note that, due to the

foveated nature of the implemented system, colorized disparity

estimates are only available within a circular region whose

diameter equals the width of the images. The outer corners of

the stereo images, outside the central circular region, have been

arbitrarily colorized Qreen.

Note that the leftward region of the large PROM chip that

contains the writing is, for the most part, correctly classified

as having 0 disparity (red) but that the disparity classification

becomes more random as one progresses to the opposite (right) end

of the PROM chip. Similarly, the IC circuit and bonding pad

region visible through the circular window in the large PROM is

largely classified correctly at 2 pixels disparity (green). Note,

however, that the boundary between these two regions (where the

analog transition across the two depth plane occurs) is rather

poorly demarcated.

There are several possible explanations for the relatively

random classification results on the right side of the PROM chip.

One possibility is that the PROM chip may actually lie slightly

further away from the camera on its right side than the left

since the camera's optical axis may have been slightly tilted

away from perfect normalcy. Note that we obtained manual

measurements of the disparity only on the left half of the PROM

chip where the appearance of writing facilitated this task.

Hence the disparity may be intermediate between 0 and 2 pixels of

disparity, leading to the production of this rather random

classification. This would not be a possible problem in a future
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implementation of the approach which employs a dense array of

disparity channels. Alternatively, the sparsity of conspicuous

luminance variations on the right side of the PROM (as is

produced by the printed text on the left side of the chip) may be

causing problems for the implemented system. This would be

especially problematic since the existing implementation pools

information from filters at a single spatial-frequency scale at

each point in the visual field. A future complete implementation

of the new approach should show substantially improved

performance by virtue of its ability to exploit subtle variations

in the left and right eye Gabor image representations at both

high and low spatial frequencies.

The inability of the existing system to pool over multiple

spatial frequencies may also be responsible for the relatively

poor disparity classification results at the circular boundary

between the ceramic PROM chip surface and the bonding pad region

visible through the window in the PROM.

Other regions of the image residing at various disparity
planes are randomly classified, as expected, since their

disparities are not represented in the present system.

In summary, the performance of the current implementation of
the model on an analog-in-depth stereo image was encouraging.

For disparity planes outside of either the 0-pixel or 2-pixel

disparity planes the depth assignments of the model were

essentially random, as they should be. The "ragged" results at

the transition across the two disparity planes as well as the

misclassification of significant portions of the right side of

the PROM chip is demonstrative of the necessity for multiple

spatial scales as well as a more dense sampling of disparity

planes which the fully implemented model would possess. Finally,

the misclassification of portions on the right side of the PROM
chip is indicative of the sensitivity to minor depth changes
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and/or spatial scale changes that a single disparity channel

possesses.

Complexity Analysis

This section offers a brief discussion of the computational

requirements of a hypothetical system which generalizes the

existing implementation by pooling across a range of spatial

frequencies at each eccentricity, and by permitting one to

incorporate a user-specified number of disparity channels.

Consider the stereo image pair of the circuit board which

was used in the experiments which we have just discussed above.

This image pair has a total disparity range of about 15 pixels.

Hence about 15 depth channels would be required to fully test the

new depth estimation approach on this image. As discussed in the

previously submitted Phase 1 final report, the newly developed

approach to depth estimation requires that 2 complete Gabor

functions must be computed within each disparity channel.

Therefore, for the stereo images of the circuit board, a total of

about 30 Gabor representations must be computed to process all 15

depth planes. In the current restricted implementation of the

approach, the computation and storage complexity associated with

the computation of each Gabor function in the previous circuit

board example has been empirically determined to be as follows:

To compute 1 Gabor representation over:

eccentricities from 0.075 to 10 degrees.

spatial frequencies from 0.05 to 6.0 cycles/deg.

6 frequency scales (levels).

6 frequency orientations (phases).

requires:

1.5 MB storage for conformally mapped lowpass image pyramid.

8.0 MB storage for Gabor representation.

AND

1875 MFLOP (million floating point operations) for space
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variant filtering of the image to obtain lowpass pyramid.

600 MFLOP for space-invariant Gabor filtering of lowpass

pyramid input.

Totalling 2475 MFLOP per computed Gabor representation.

Once the Gabor representations have been computed from the

original stereoscopic images, the additionel computational

demands associated with Gabor correlation, pooling and depth

discrimination are rel.'ively minor. Hence, the computational

demands of the new disparity estimation approach are well

approximated by those associated with the front-end linear

filtering operations alone!

As an approximate rule of thumb, each doubling of the high

frequency range over which the Gabor is computed leads to a

doubling of storage and computation requirements. Similarly,

each doubling of the range of eccentricities over which the Gabor

is computed leads to increases in storage and computation by a

factor of about (n+l)/n where n is the range in octaves and

n = log 2 (eccentricitYhi / eccentricitylow),

from the lowest to the highest represented eccentricity before

doubling the range. It is therefore reasonably expensive to

double the peak resolution of the system, but, because of the

space-variant (foveated log conformal mapping) nature of the

encoded representation as discussed in the Phase 1 final report,

increasing the visual field extent is relatively inexpensive

computationally.

Given the computational complexity outlined above, it is

easy to determine the cost of computing the 30 Gabor level

representations necessary to fully process all disparities in the

circuit board stereogram. Namely, 30 Gabors x 2475 MFLOP/Gabor

75,000 MFLOP (approximately). This would require about 52 days

of CPU time on a 10 MHz PC/AT with an 80287 which we currently

have available to us. A 20 MFLOP/sec array processor would bring
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this time down to a couple of hours. In a production system,

some paraatetric flexibility of the algorithms could be sacrificed

in favor of speed to get about a factor of 2 to 5 reduction in

the required FLOPS.

In a system designed to handle any analog real-world images,

one would employ disparity channels of fine resolution near the

depth of fixation (zero disparity) and progressively more coarse

disparity sampling at increasing distances in front of and behind

the plane of fixation. This would lead to a reduction in overall

computational cost without sacrificing either resolution near the

plane of fixation, or range of total disparity encoding. These

additional developments would further reduce the computatlondi

complexity of the approach and would be an integral part of any

subsequent phase of development.
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Figure A2. A schematic map of the disparities associated
with different surfaces depicted in figures Al and A3. The
numbers represent the disparity values in pixel units
determined from the interference images of the stereo pair
in- figure Al.
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